NETL's Research on Natural Gas Quality and Interchangeability

Presented to:
CEC Natural Gas
Interchangeability Stakeholder
Advisory Committee Meeting
October 29, 2007

Doug Straub
National Energy Technology Laboratory

Outline

- Motivation, scope, and history of DOE/NETL effort
- Executive overview of key results
 - -Gap analysis and database development
 - -Pipeline mixing
 - -Recip. engines
 - -Gas turbines
 - -Sensors
 - -HC dewpoint studies
- Lean premixed combustion (for gas turbines)
 - Gas composition effects on emissions
- Final report:
 - -http://www.ferc.gov/industries/lng/indus-act/issues/gas-qual.asp

What Is the Motivation For This Effort?

- Future demand for natural gas will increase
- Future "pipeline" gas sources will vary
 - Energy Information Agency projections
 - -Annual Energy Outlook 2007

Figure 75. Natural gas production by source, 1990-2030 (trillion cubic feet)

Figure 77. Net U.S. imports of natural gas by source, 1990-2030 (trillion cubic feet)

Reference: http://www.eia.doe.gov/oiaf/aeo/

What Is the Scope Of Fuel Variations?

Different fuel sources lead to different fuel compositions

- -Liquefied Natural Gas (LNG) Imports
 - Higher BTU value
 - Higher percentage of C2's and C3's
 - Lower level of inerts
- -Unconventional sources
 - Coal-bed methane
 - Tight sandstone formations
 - Gas shales
- -Low BTU fuels
 - Biomass
 - Syn-gas

History/Chronology of Project(1 of 2)

- May 2005 Request from FERC Chairman Wood for DOE to conduct LNG Interchangeability research
- June 16, 2005 Secretary response that FE would lead the research effort
- June 22, 2005 NETL to work with FERC staff to develop a research plan
- July 25, 2005 Draft "Path Forward" presented to HQ/FERC
- August 19 & December 14, 2005 Finalized work plan with FERC to include additional concerns (i.e., dropout)

History/Chronology of Project (2 of 2)

- October 5, 2006 HQ/FERC briefing and draft report completed.
 Peer-review initiated.
- April 2007 Peer-review comments received and organized
- July 2007 Peer-review comments addressed and final report delivered to FERC
- Oct 23, 2007 Final Report available on FERC web-site
 - -http://www.ferc.gov/industries/lng/indus-act/issues/gas-qual.asp

Overview of NETL Tasks

- Gather information and develop database
 - -Public info. on gas composition and effects on equipment
- Pipeline mixing
 - Steady-state and transient mixing behavior
- Reciprocating engines
 - -Literature review only
- Stationary gas turbines
 - -Literature review, modeling, and experiments
- Sensors for gas composition
 - -Review available technology and recent advances
- HC dewpoint predictions
 - -Assess models predictions for C6+

Results - Database Development and "Gap Analysis"

- Better collection protocols need defined
 - Data has been collected for a broad range of purposes
 - -May not be generally useful (in agreement with NGC+)
- Re-cip engines significant body of data
- Appliances several studies
 - -Previous and on-going efforts
- Turbines limited data on lean premixed designs
- Industrial burners CEC/GTI effort
- Important general issues
 - -How fast can the fuel composition change?
 - –Do we have sensors to detect this change?
 - -Hydrocarbon "dropout"

Key Findings – CFD Modeling and Pipeline Mixing

 Steady-state mixing relatively fast (within 100 pipe diameters)

Transient excurs

significant

<u> </u>		
Bulk Velocity	Composition Transient @ 100km	
0.5 m/s	224 s	
1.3 m/s	54 s	
2 m/s	30 s	
5 m/s	12 s	
10 m/s	10.3 s	
20 m/s	10.0 s	

Effective Diffusivity = $0.005 \text{ m}^2/\text{s}^2$ Switching Time = 1 sec

Key Findings – Pipeline Mixing

- Steady-state mixing relatively fast (within 100 pipe diameters)
- Transient excursions could be more significant

Bulk Velocity	Composition Transient @ 100km
0.5 m/s	224 s
1.3 m/s	54 s
2 m/s	30 s
5 m/s	12 s
10 m/s	10.3 s
20 m/s	10.0 s

Effective Diffusivity = $0.005 \text{ m}^2/\text{s}^2$ Switching Time = 1 sec

Reciprocating Engines – Key Findings

- Engine control system design will determine impact
- Open-loop control systems
 - -Small increases in emissions are possible
 - Legacy engines most affected
- Closed-loop control systems
 - No significant impacts expected from LNG-based fuels
 - Timing adjustments may be required (knock sensors)
 - Timing changes may reduce efficiency 1-3%
- Rapid on-line fuel composition sensors would be useful
- Generic engine testing not warranted

Turbines – Key Findings

- Engine control system is important
 - -Mass-based fuel metering would be an improvement
- Lean premixed system (DLN) engines without exhaust after-treatment are most affected
 - -Dynamics
 - Flashback and/or auto-ignition
 - –Mixing
 - -Emissions
 - No increase observed in NETL tests with 5% pilot
- Rapid on-line fuel composition sensors would be useful

HC Dewpoint Assessment – Key Findings

- 16 gas compositions with experimentally determined dewpoints from various sources
- Equations of state for vapor-liquid equilibrium
 - Investigated 7 different models

VLE for Gas Mixture #3 Containing: 96.6% CH4, 0.2% C2H6, 0.1% C3H8, 0.1% C4-C8, 2.8% N2

HC Dew Point – Model Evaluation

$$MAD = \frac{\sum \left| T_{M} - T_{P} \right|}{n}$$

Name of Model	Mean Absolute Deviation
Peng-Robinson (PR)	2.95
Soave-Redlich-Kwong (SRK)	1.48
Predictive Soave-Redlich-Kwong (PSRK)	1.41
Statistical Associating Fluid Theory (SAFT)	1.43
American Petroleum Institute (API-SRK)	1.48
Benedict-Webb-Ruben-Starling (BWRS)	3.36
Grayson Streed (GS)	1.48

Accuracy of models varies depending on the gas composition (see report for more details)

Gas Turbine Emission Issues

Questions Before Proceeding?

Gas Turbine Issues – Previous Work

- Public information on LNG performance is limited
- Small effect on older diffusion flame systems (+2ppm/100ppm)
 - -Hung, 1976, 1977; Meier, 1998

$$\frac{NOx}{NOx_{CH4}} = 1 + 10 \cdot \ln \left(\frac{T}{T_{CH4}}\right)$$

100% Methane

- Effects on premixed systems not well understood
 - -Lee, 2000

Lee, J. C. Y. (2000). Reduction of NOx Emissions for Lean Prevaporized-Premixed Combustors, PhD Thesis, University of Washington, Seatle WA.

Flores, et al, 2001, 2003; Hack and McDonell, 2005

Hack, R. L., McDonell, V. G. (2005). Impact of Ethane, Propane, and Dilunet Content in Natural Gas on the Perfromance of a Commercial Microturbine Generator. ASME GT2005-68777.

NETL Approach For GT's

(Part Of Larger Effort)

- Simulated premixed combustion experiments
 - -Lab-scale (Rijke tube burner)
 - Atmospheric swirl-stabilized burner
 - -Pressurized DLN nozzle

Lab-scale burner

Atmospheric pressure combustor for screening studies

Full-size gas turbine combustor for changes in stability and emissions

Lessons Learned

- Propane is not necessarily 100% pure
 - As-received residential grade propane is nominally 85% propane,
 15% ethane (vapor phase)
 - Ethane and methane are more volatile and removed quickly

Important Consideration -RMS Pressure Influences NOx Emissions

Gas Properties and Blending Repeatibility

(Wobbe: ± 1 , HHV: ± 2)

Mass Closure Quality Check

NOx Emissions vs. Wobbe

Variations in Equivalence Ratio and Adiabatic Flame Temperatures

NOx Correlates With Adiabatic Flame Temperature

Summary of Gas Turbine Fuel Interchangeability Issues -- Emissions

- Wobbe index had no significant effect on emissions
 - NOx correlates with flame temperature
 - -Flame temperature is weak function of C:H ratio (see Gulder)
- Lean premixed systems without exhaust after-treatment are most at-risk
- NETL results show no significant emissions impact over a realistic range of fuel compositions
 - -Differs from previous work (UC-Irvine and U. of Wash.)
 - -Differences
 - NETL tests were not 100% premixed
 - 5% of fuel was diffusion pilot
 - Thermo-acoustic instability constraints
 - NETL results covered more "realistic" range of compositions

Questions or Comments...

Final report publicly available @

-http://www.ferc.gov/industries/lng/indus-act/issues/gas-qual.asp

